
Chapter

24 Cryptography

Union code book used in the U.S. Civil War. U.S. government Image. NSA.

Contents

24.1 Greatest Common Divisors (GCD) 687

24.2 Modular Arithmetic . 691

24.3 Cryptographic Operations 699

24.4 The RSA Cryptosystem 703

24.5 The El Gamal Cryptosystem 706

24.6 Exercises . 708

686 Chapter 24. Cryptography

Computers today are used for a multitude of sensitive applications. Customers

utilize electronic commerce to make purchases and pay their bills. Businesses use

the Internet to share sensitive company documents and interact with business part-

ners. Governments use computers to keep track of personal information about their

citizens. Hospitals use databases to track patients and their billing information.

And universities use networks of computers to store personal information about

students and their grades. Each of us has an abundance of private and personal

information that is being stored and transmitted by computers today.

Such sensitive information can be potentially damaging if it is altered, de-

stroyed, or falls into the wrong hands. Thus, we should use powerful techniques

to protect our sensitive data. In this chapter, we discuss several powerful algorith-

mic techniques for protecting sensitive information, so as to achieve the following

goals:

• Data integrity: Information should not be altered without detection. For

example, it is important to prevent the modification of purchase orders or

other contractually binding documents transmitted electronically.

• Authentication: Individuals and organizations that are accessing or commu-

nicating sensitive information must be correctly identified, that is, authen-

ticated. For example, corporations offering telecommuting arrangements to

their employees should set up an authentication procedure for accessing cor-

porate databases through the Internet.

• Authorization: Agents that are performing computations involving sensitive

information must be authorized to perform those computations.

• Nonrepudiation: In transactions that imply a contract, the parties that have

agreed to that contract must not have the ability of backing out of their obli-

gations without being detected.

• Confidentiality: Sensitive information should be kept secret from individuals

who are not authorized to see that information. That is, we must ensure that

data is viewed by the sender and by the receiver, but not by unauthorized

parties who can eavesdrop on the communication. For example, many email

messages are meant to be confidential.

Many of the techniques we discuss in this chapter for achieving the above goals

utilize number theory. Thus, we begin this chapter by discussing a number of

important number theory concepts and algorithms. We describe the ancient, yet

surprisingly efficient, Euclid’s algorithm for computing greatest common divisors,

as well as algorithms for computing modular exponents and inverses. We show how

many of these number theory algorithms can be used in cryptographic algorithms

that implement computer security services. We focus on encryption, including the

popular public-key encryption schemes, RSA and El Gamal.

24.1. Greatest Common Divisors (GCD) 687

24.1 Greatest Common Divisors (GCD)

Many modern encryption schemes, like RSA and El Gamal, are based on view-

ing messages as numbers and using number-theoretic algorithms to process them.

Thus, before we discuss some of these well-known encryption schemes, we should

first discuss several fundamental algorithms for performing important computa-

tions involving numbers. Throughout this discussion, we assume that all variables

are integers. Also, proofs of some mathematical facts are left as exercises.

24.1.1 Some Facts from Elementary Number Theory

To get us started, we need some facts from elementary number theory, including

some notation and definitions. Given positive integers a and b, we use the notation

a|b
to indicate that a divides b, that is, b is a multiple of a. If a|b, then we know that

there is some integer k, such that b = ak. The following properties of divisibility

follow immediately from this definition.

Theorem 24.1: Let a, b, and c be arbitrary integers. Then

• If a|b and b|c, then a|c.

• If a|b and a|c, then a|(ib + jc), for all integers i and j.

• If a|b and b|a, then a = b or a = −b.

Proof: See Exercise C-24.1.

Recall that an integer p is prime if p ≥ 2 and its only divisors are the trivial

divisors 1 and p. Thus, in the case that p is prime, d|p implies d = 1 or d = p. An

integer greater than 2 that is not prime is composite. We also have the following:

Theorem 24.2 (Fundamental Theorem of Arithmetic): Let n > 1 be an in-

teger. Then there is a unique set of prime numbers {p1, . . . , pk} and positive integer

exponents {e1, . . . , ek}, such that

n = pe1

1 · · · pek

k .

The product pe1

1 · · · pek

k is known as the prime decomposition of n in this case.

Theorem 24.2 and the notion of unique prime decomposition is the basis of several

cryptographic schemes.

688 Chapter 24. Cryptography

The Greatest Common Divisor (GCD)

The greatest common divisor of positive integers a and b, denoted gcd(a, b), is the

largest integer that divides both a and b. Alternatively, we could say that gcd(a, b)
is the number c, such that if d|a and d|b, then d|c. If gcd(a, b) = 1, we say that a
and b are relatively prime. We extend the notion of greatest common divisor to a

pair of arbitrary integers by the following two rules:

• gcd(a, 0) = gcd(0, a) = a.

• gcd(a, b) = gcd(|a|, |b|), which takes care of negative values.

Thus, gcd(12, 0) = 12, gcd(10 403, 303) = 101, and gcd(−12, 78) = 6.

Relating the Modulo Operator and the GCD

The following theorem gives an alternative characterization of the greatest common

divisor. Its proof makes use of the modulo operator.

Theorem 24.3: For any positive integers a and b, gcd(a, b) is the smallest posi-

tive integer d such that d = ia + jb for some integers i and j. In other words, if d
is the smallest positive integer linear combination of a and b, then d = gcd(a, b).

Proof: Suppose d is the smallest integer such that d = ia + jb for integers i and

j. Note that, immediately from the definition of d, any common divisor of both a
and b is also a divisor of d. Thus, d ≥ gcd(a, b). To complete the proof, we need

to show that d ≤ gcd(a, b).

Let h = ⌊a/d⌋. That is, h is the integer such that a mod d = a − hd. Then

a mod d = a − hd

= a − h(ia + jb)

= (1 − hi)a + (−hj)b.

In other words, a mod d is also an integer linear combination of a and b. Moreover,

by the definition of the modulo operator, a mod d < d. But d is the smallest

positive integer linear combination of a and b. Thus, we must conclude that a mod
d = 0, which implies that d|a. In addition, by a similar argument, we get that d|b.

Thus, d is a divisor of both a and b, which implies d ≤ gcd(a, b).

As we will show in Section 24.2, this theorem shows that the gcd function is

useful for computing multiplicative modular inverses. In the next subsection, we

show how to quickly compute the gcd function.

24.1. Greatest Common Divisors (GCD) 689

24.1.2 Euclid’s GCD Algorithm

To compute the greatest common divisor of two numbers, we can use one of the

oldest algorithms known, Euclid’s algorithm. This algorithm is based on the fol-

lowing property of gcd(a, b):

Lemma 24.4: Let a and b be two positive integers. For any integer r, we have

gcd(a, b) = gcd(b, a − rb).

Proof: Let d = gcd(a, b) and c = gcd(b, a− rb). That is, d is the largest integer

such that d|a and d|b, and c is the largest integer such that c|b and c|(a − rb). We

want to prove that d = c. By the definition of d, the number

(a − rb)/d = a/d − r(b/d)

is an integer. Thus, d divides both a and a − rb; hence, d ≤ c.

By the definition of c, k = b/c must be an integer, since c|b. Moreover,

(a − rb)/c = a/c − rk

must also be an integer, since c|(a− rb). Thus, a/c must also be an integer, that is,

c|a. Therefore, c divides both a and b; hence, c ≤ d. We conclude then that d = c.

Lemma 24.4 leads us easily to an ancient algorithm, known as Euclid’s algo-

rithm, for computing the greatest common divisor (GCD) of two numbers, shown

next in Algorithm 24.1.

Algorithm EuclidGCD(a, b):

Input: Nonnegative integers a and b
Output: gcd(a, b)

if b = 0 then

return a
return EuclidGCD(b, a mod b)

Algorithm 24.1: Euclid’s GCD algorithm.

An example of the execution of Euclid’s algorithm is shown in Table 24.2.

1 2 3 4 5 6 7

a 412 260 152 108 44 20 4

b 260 152 108 44 20 4 0

Table 24.2: Example of an execution of Euclid’s algorithm to compute

gcd(412, 260) = 4. The arguments a and b of each recursive invocation of method

EuclidGCD(412, 260) are shown left-to-right, with the column headings showing

the level of recursion in the EuclidGCD method.

690 Chapter 24. Cryptography

Analyzing Euclid’s Algorithm

Let us analyze the running time of Euclid’s GCD algorithm. The number of arith-

metic operations performed by method EuclidGCD(a, b) is proportional to the

number of recursive calls. So to bound the number of arithmetic operations per-

formed by Euclid’s algorithm, we need only bound the number of recursive calls.

First, we observe that after the first call, the first argument is always larger than

the second one. For i > 0, let ai be the first argument of the ith recursive call of

method EuclidGCD. Clearly, the second argument of a recursive call is equal to

ai+1, the first argument of the next call. Also, we have

ai+2 = ai mod ai+1,

which implies that the sequence of the ai’s is strictly decreasing. We will now show

that the sequence decreases quickly. Specifically, we claim that

ai+2 <
1

2
ai.

To prove the claim, we distinguish two cases:

Case 1: ai+1 ≤ 1
2ai. Since the sequence of the ai’s is strictly decreasing, we have

ai+2 < ai+1 ≤ 1

2
ai.

Case 2: ai+1 > 1
2ai. In this case, since ai+2 = ai mod ai+1, we have

ai+2 = ai mod ai+1 = ai − ai+1 <
1

2
ai.

Thus, the size of the first argument to the EuclidGCD method decreases by half

with every other recursive call. We may therefore summarize the above analysis as

follows.

Theorem 24.5: Let a and b be two positive integers. Euclid’s algorithm computes

gcd(a, b) by executing O(log max(a, b)) arithmetic operations.

We note that the complexity bound here is based on counting arithmetic op-

erations, which themselves can be implemented to have reasonably-fast running

times as a function of their input sizes, which are defined by the number of bits of

the numbers involved. Moreover, note that the numbers, a and b, are represented

using O(log max(a, b)) bits. So if we let n denote the input size for Euclid’s algo-

rithm, in bits, then we can characterize its performance as using O(n) arithmetic

operations.

24.2. Modular Arithmetic 691

24.2 Modular Arithmetic

Let Zn denote the set of nonnegative integers less than n:

Zn = {0, 1, · · · , (n − 1)}.
The set Zn is also called the set of residues modulo n, because if b = a mod
n, b is sometimes called the residue of a modulo n. Modular arithmetic in Zn,

where operations on the elements of Zn are performed modn, exhibits properties

similar to those of traditional arithmetic, such as the associativity, commutativity,

distributivity of addition and multiplication, and the existence of identity elements

0 and 1 for addition and multiplication, respectively. Moreover, in any arithmetic

expression, reducing each of its subexpressions modulo n produces the same result

as computing the entire expression and then reducing that value modulo n. Also,

every element x in Zn has an additive inverse, that is, for each x ∈ Zn, there is a

y ∈ Zn such that x + y mod n = 0. For example, the additive inverse of 5 modulo

11 is 6.

When it comes to multiplicative inverses, however, an important difference

arises. Let x be an element of Zn. A multiplicative inverse of x is an element

z−1 ∈ Zn such that xx−1 ≡ 1 mod n. For example, the multiplicative inverse of

5 modulo 9 is 2, that is, 5−1 = 2 in Z9. As in standard arithmetic, 0 does not have

a multiplicative inverse in Zn. Interestingly, some nonzero elements also may not

have a multiplicative inverse in Zn. For example, 3 does not have a multiplica-

tive inverse in Z9. However, if n is prime, then every element x 	= 0 of Zn has a

multiplicative inverse in Zn (1 is its own multiplicative inverse).

Theorem 24.6: An element x > 0 of Zn has a multiplicative inverse in Zn if and

only if gcd(x, n) = 1 (that is, x and n have no common factors other than 1).

Proof: Suppose that gcd(x, n) = 1. By Theorem 24.3, there are integers i and

j such that ix + jn = 1. This implies ix mod n = 1, that is, i mod n is the

multiplicative inverse of x in Zn, which proves the “if” part of the theorem.

To prove the “only if” part, suppose, for a contradiction, that x > 1 divides n,

and there is an element y such that xy ≡ 1 mod n. We have xy = kn+1, for some

integer k. Thus, we have found integers i = y and j = −k such that ix + jn = 1.

By Theorem 24.3, this implies that gcd(x, n) = 1, a contradiction.

Recall that if gcd(x, n) = 1, we say x and n are relatively prime (1 is relatively

prime to all other integers). Thus, Theorem 24.6 implies that x has a multiplicative

inverse in Zn if and only if x is relatively prime to n. In addition, Theorem 24.6

implies that the sequence 0, x, 2x, 3x, . . . , (n − 1)x is simply a reordering of the

elements of Zn, that is, it is a permutation of the elements Zn.

692 Chapter 24. Cryptography

Example Multiplicative Inverses

In Table 24.3, we show the multiplicative inverses of the elements of Z11 as an

example. When the multiplicative inverse x−1 of x exists in Zn, the notation y/x
in an expression taken modulo n means “y x−1 mod n.”

x 0 1 2 3 4 5 6 7 8 9 10

x−1 mod 11 1 6 4 3 9 2 8 7 5 10

Table 24.3: Multiplicative inverses of the elements of Z11.

In Table 24.4, we show the powers of the nonnull elements of Z11. We observe

the following interesting patterns:

• The last column of the table, with the values x10 mod 11 for x = 1, · · · , 10,

contains all ones, as given by Fermat’s Little Theorem (19.5).

• In row 1, a subsequence of one element (1), is repeated ten times.

• In row 10, a subsequence of two elements, ending with 1, is repeated five

times, since 102 mod 11 = 1.

• In rows 3, 4, 5, and 9, a subsequence of five elements, ending with 1, is

repeated twice.

• In each of the rows 2, 6, 7, and 8, the ten elements are all distinct.

• The lengths of the subsequences forming the rows of the table, and their

number of repetitions, are the divisors of 10, that is, 1, 2, 5, and 10.

x x2 x3 x4 x5 x6 x7 x8 x9 x10

1 1 1 1 1 1 1 1 1 1

2 4 8 5 10 9 7 3 6 1

3 9 5 4 1 3 9 5 4 1

4 5 9 3 1 4 5 9 3 1

5 3 4 9 1 5 3 4 9 1

6 3 7 9 10 5 8 4 2 1

7 5 2 3 10 4 6 9 8 1

8 9 6 4 10 3 2 5 7 1

9 4 3 5 1 9 4 3 5 1

10 1 10 1 10 1 10 1 10 1

Table 24.4: Successive powers of the elements of Z11 modulo 11.

24.2. Modular Arithmetic 693

Euler’s Totient Function

Euler’s totient function of a positive integer n, denoted φ(n), is defined as the

number of positive integers less than or equal to n that are relatively prime to n.

That is, φ(n) is equal to the number of elements in Zn that have multiplicative

inverses in Zn. If p is a prime, then

φ(p) = p − 1.

Indeed, since p is prime, each of the numbers 1, 2, . . . , p− 1 are relatively prime to

it, and φ(p) = p − 1.

What if n isn’t a prime number? Suppose n = pq, where p and q are distinct

primes. How many numbers are relatively prime to n? Well, initially, we observe

that there are pq positive integers between 1 and n. However, q of them (including

n) are multiples of p, and so they have a gcd of p with n. Similarly, there are

p multiples of q (again, including n). Those multiples can’t be counted in φ(n).
Thus, we see that

φ(n) = pq − q − (p − 1) = (p − 1)(q − 1).

Euler’s totient function is closely related to an important subset of Zn known as

the multiplicative group for Zn, which is denoted as Z∗

n. The set Z∗

n is defined to

be the set of integers between 1 and n that are relatively prime to n. If n is prime,

then Z∗

n consists of the n − 1 nonzero elements in Zn, that is,

Z∗

n = {1, 2, . . . , n − 1},

if n is prime. In general, Z∗

n contains φ(n) elements.

The set Z∗

n possesses several interesting properties, with one of the most impor-

tant being that this set is closed under multiplication modulo n. That is, for any pair

of elements a and b of Z∗

n, we have that c = ab mod n is also in Z∗

n. Indeed, by

Theorem 24.6, a and b have multiplicative inverses in Zn. To see that Z∗

n has this

closure property, let d = a−1b−1 mod n. Clearly, cd mod n = 1, which implies

that d is the multiplicative inverse of c in Zn. Thus, again applying Theorem 24.6,

we have that c is relatively prime to n, that is, c ∈ Z∗

n. In algebraic terminology, we

say that Z∗

n is a group, which is a shorthand way of saying that each element in Z∗

n

has a multiplicative inverse and multiplication in Z∗

n is associative, has an identity,

and is closed in Z∗

n.

The fact that Z∗

n has φ(n) elements and is a multiplicative group naturally leads

to an extension of Fermat’s Little Theorem (19.5). Recall that in Fermat’s Little

Theorem, the exponent is p − 1 = φ(p), since p is prime. As it turns out, a gen-

eralized form of Fermat’s Little Theorem is true, too. This generalized form is

presented in the following, which is known as Euler’s Theorem.

694 Chapter 24. Cryptography

Euler’s Theorem

Theorem 24.7 (Euler’s Theorem): Let n be a positive integer, and let x be an

integer such that gcd(x, n) = 1. Then

xφ(n) ≡ 1 (mod n).

Proof: The proof technique is similar to that of Fermat’s Little Theorem. Denote

the elements of set Z∗

n, the multiplicative group for Zn, as u1, u2, . . . , uφ(n). By

the closure property of Z∗

n,

Z∗

n = {xui : i = 1, · · · , φ(n)},
that is, multiplying elements in Z∗

n by x modulo n merely permutes the sequence

u1, u2, . . . , uφ(n). Thus, multiplying together the elements of Z∗

n, we obtain

(xu1) · (xu2) · · · (xuφ(n)) ≡ u1 u2 · · ·uφ(n) (mod n).

Again, we collect a term xφ(n) on one side, giving us the congruence

xφ(n)(u1 u2 · · ·uφ(n)) ≡ u1 u2 · · ·uφ(n) (mod n).

Dividing by the product of the ui’s, gives us xφ(n) ≡ 1 mod n.

Theorem 24.7 gives a closed-form expression for the multiplicative inverses.

Namely, if x and n are relatively prime, we can write

x−1 ≡ xφ(n)−1 (mod n).

Generators

Given a prime p and an integer a between 1 and p−1, the order of a is the smallest

exponent e > 1 such that

ae ≡ 1 mod p.

A generator (also called primitive root) of Zp is an element g of Zp with order p−1.

We use the term “generator” for such an element a, because the repeated exponen-

tiation of a can generate all of Z∗

p . For example, as shown in Table 24.4, the

generators of Z11 are 2, 6, 7, and 8. Generators play an important role in many

computations, including several in image analysis and cryptography. The existence

of generators is established by the following theorem, stated without proof.

Theorem 24.8: If p is a prime, then set Zp has φ(p − 1) generators.

24.2. Modular Arithmetic 695

24.2.1 Modular Exponentiation

Suppose we want to compute 30,19243,791 mod 65,301. Multiplying 30,192 by

itself 43,791 times and then taking the result modulo 65,301 will yield unpre-

dictable results in most programming languages due to arithmetic overflows. Thus,

we should take the modulo after each multiplication, keeping the numbers in Zn,

where n = 65,301 is the modulus.

The Main Drawback with This Naive Approach

Unfortunately, although this “naive” exponentiation algorithm is correct, it is inef-

ficient, for it requires Θ(p) multiplications and divisions, where p is the exponent.

With large exponents, this running time would be quite slow, since it is exponential

in the size of the input, which is the number of bits needed to represent the various

input numbers. Fortunately, there is a better algorithm.

The Repeated Squaring Algorithm

A simple but important observation for an improved exponentiation algorithm is

that squaring a number ap is equivalent to multiplying its exponent p by two. In

addition, multiplying two numbers ap and aq is equivalent to computing a(p+q).

Based on these observations, we can evaluate ap mod n with the recursive compu-

tation, called the repeated squaring method, given in Algorithm 24.5.

Algorithm FastExponentiation(a, p, n):

Input: Integers a, p, and n
Output: r = ap mod n

if p = 0 then

return 1
if p is even then

t ← FastExponentiation(a, p/2, n) // p is even, so t = ap/2 mod n
return t2 mod n

t ← FastExponentiation(a, (p − 1)/2, n) // p is odd, so t = a(p−1)/2 mod n
return a(t2 mod n) mod n

Algorithm 24.5: Algorithm FastExponentiation for modular exponentiation using

the repeated squaring method. Note that, since the modulo operator is applied after

each arithmetic operation in method FastExponentiation, the size of the operands

of each multiplication and modulo operation is never more than 2⌈log2 n⌉ bits.

696 Chapter 24. Cryptography

Analyzing the Repeated Squaring Algorithm

The main idea of this repeated squaring algorithm is to consider each bit of the

exponent, p, in turn by dividing p by two until p goes to zero, squaring the current

product Qi for each such bit. In addition, if the current bit is a 1 (that is, p is odd),

then we multiply in the base, a, as well.

To see why this algorithm works, define, for i = 1, . . . ,b,

Qi = aqi mod n.

From the recursive definition of qi, we derive the following definition of Qi:

Qi = (Q2
i−1 mod n)apb−i mod n for 1 < i ≤ b

Q1 = apb−1 mod n.
(24.1)

It is easy to verify that Qb = ap mod n.

We show a sample execution of the repeated squaring algorithm for modular

exponentiation in Table 24.6.

p 12 6 3 1 0

r 1 12 8 2 1

Table 24.6: Example of an execution of the repeated squaring algorithm for modular

exponentiation. For each recursive invocation of FastExponentiation(2, 12, 13),
we show the second argument, p, and the output value r = 2p mod 13.

The running time of the repeated squaring algorithm is easy to analyze. Refer-

ring to Algorithm 24.5, a constant number of arithmetic operations are performed,

excluding those in the recursive call. Also, in each recursive call, the exponent

p gets halved. Thus, the number of recursive calls and arithmetic operations is

O(log p). We may therefore summarize as follows.

Theorem 24.9: Let a p, and n be positive integers, with a < n. The repeated

squaring algorithm computes ap mod n using O(log p) arithmetic operations.

Since the number, p, is represented in binary using O(log p) bits, this theo-

rem implies that the number of arithmetic operations used in the repeated squaring

algorithm is linear in the input size of the exponent, p, in bits.

24.2. Modular Arithmetic 697

24.2.2 Modular Multiplicative Inverses

We turn now to the problem of computing multiplicative inverses in Zn. First, we

recall Theorem 24.6, which states that a nonnegative element x of Zn admits an

inverse if and only if gcd(x, n) = 1. The proof of Theorem 24.6 actually suggests

a way to compute x−1 mod n. Namely, we should find the integers i and j referred

to by Theorem 24.3, such that

ix + jn = gcd(x, n) = 1.

If we can find such integers i and j, we immediately obtain

i ≡ x−1 mod n.

The computation of the integers i and j referred to by Theorem 24.3 can be done

with a variation of Euclid’s algorithm, called extended Euclid’s algorithm.

Revisiting Euclid’s GCD Algorithm

Let a and b be positive integers, and denote with d their greatest common divisor,

d = gcd(a, b).

Let q = a mod b and r be the integer such that a = rb + q, that is,

q = a − rb.

Euclid’s algorithm is based on the repeated application of the formula

d = gcd(a, b) = gcd(b, q),

which immediately follows from Lemma 24.4.

Suppose that the recursive call of the algorithm, with arguments b and q, also

returns integers k and l, such that

d = kb + lq.

Recalling the definition of r, we have

d = kb + lq = kb + l(a − rb) = la + (k − lr)b.

Thus, we have

d = ia + jb, for i = l and j = k − lr.

This last equation suggests a method to compute the integers i and j, in addition to

the GCD of a and b.

698 Chapter 24. Cryptography

Extended Euclid’s Algorithm

The resulting method, known as the extended Euclid’s algorithm, is shown in Al-

gorithm 24.7.

Algorithm ExtendedEuclidGCD(a, b):

Input: Nonnegative integers a and b
Output: Triplet of integers (d, i, j) such that d = gcd(a, b) = ia + jb

if b = 0 then

return (a, 1, 0)
q ← a mod b
Let r be the integer such that a = rb + q
(d, k, l) ← ExtendedEuclidGCD(b, q)
return (d, l, k − lr)

Algorithm 24.7: Extended Euclid’s algorithm.

We present, in Table 24.8, a sample execution of this algorithm. Its analysis is

analogous to that of Euclid’s algorithm.

a 412 260 152 108 44 20 4

b 260 152 108 44 20 4 0

r 1 1 1 2 2 5

i 12 -7 5 -2 1 0 1

j -19 12 -7 5 -2 1 0

Table 24.8: Execution of ExtendedEuclidGCD(a, b), for a = 412 and b = 260, to

compute (d, i, j) such that d = gcd(a, b) = ia + jb. For each recursive invocation,

we show the arguments a and b, variable r, and output values i and j. The output

value d is always gcd(412, 260) = 4.

Theorem 24.10: Let a and b be two positive integers. The extended Euclid’s

algorithm for computing a triplet of integers (d, i, j) such that

d = gcd(a, b) = ia + jb,

executes O(log max(a, b)) arithmetic operations.

Corollary 24.11: Let x be an element of Zn such that gcd(x, n) = 1. The multi-

plicative inverse of x in Zn can be computed with O(log n) arithmetic operations.

24.3. Cryptographic Operations 699

24.3 Cryptographic Operations

The Internet enables a growing number of useful activities, such as email, shop-

ping, and financial transactions, to be performed electronically. However, the In-

ternet itself is an insecure transmission network: data transmitted over Wi-Fi and

other communication media travels can be observed and potentially modified en-

route to its destination. A variety of cryptographic techniques have therefore been

developed to support secure communication over an insecure network such as the

Internet. In particular, cryptography research has developed the following useful

cryptographic computations:

• Encryption/decryption: A message M to be transmitted, called the plaintext,

is transformed into an unrecognizable string of characters C, called the ci-

phertext, before being sent over the network. This transformation is known

as encryption. After the ciphertext C is received, it is converted back to

the plaintext M using an inverse transformation (that depends on additional

secret information). This reverse transformation is called decryption. An

essential ingredient in encryption is that it should be computationally infea-

sible for an outsider to transform C back to M (without knowing the secret

information possessed by the receiver).

• Digital signatures: The author of a message M computes a message S that

is derived from M and secret information known by the author. The message

S is a digital signature if another party can easily verify that only the author

of M could have computed S in a reasonable amount of time.

The two techniques lead to methods for supporting the information security

services discussed in the introduction:

• Data integrity: Computing a digital signature S of a message M not only

helps us determine the author of M , it also verifies the integrity of M , for a

modification to M would produce a different signature. So to perform a data

integrity check we can perform a verification test that S is, in fact, a digital

signature for the message M .

• Authentication: The above cryptographic tools can be used for authentica-

tion in two possible ways. In password authentication schemes, a user will

type a user ID and password in a client application, with this combination

being immediately encrypted and sent to an authenticator. If the encrypted

user ID and password combination matches that in a user database, then the

individual is authenticated (and the database never stores passwords in plain-

text). Alternatively, an authenticator can issue a challenge to a user in the

form of a random message M that the user must immediately digitally sign

for authentication.

700 Chapter 24. Cryptography

• Authorization: Given a scheme for authentication, we can issue authoriza-

tions by keeping lists, called access control lists, that are associated with

sensitive data or computations that should be accessed only by authorized

individuals. Alternatively, the holder of a right to sensitive data or computa-

tions can digitally sign a message C that authorizes a user to perform certain

tasks. For example, the message could be of the form, “I, U.S. Corporation

vice president, give person x permission to access our fourth quarter earnings

data.”

• Confidentiality: Sensitive information can be kept secret from nonauthorized

agents by encrypting it.

• Nonrepudiation: If we make the parties negotiating a contract, M , digitally

sign that message, then we can have a way of proving that they have seen and

agreed to the content of the message M .

Symmetric Encryption Schemes

As mentioned above, a fundamental problem in cryptography is confidentiality,

that is, sending a message from Alice to Bob so that a third party, Eve, cannot

gain any information from an intercepted copy of the message. Moreover, we have

observed that confidentiality can be achieved by encryption schemes, or ciphers,

where the message M to be transmitted, called the plaintext, is encrypted into an

unrecognizable string of characters C, called the ciphertext, before being sent over

the network. After the ciphertext C is received, it is decrypted back to the plaintext

M using an inverse transformation called decryption.

Secret Keys

In describing the details of an encryption scheme, we must explain all the steps

needed in order to encrypt a plaintext M into a ciphertext C, and how to then

decrypt that ciphertext back to M . Moreover, in order for Eve to be unable to

extract M from C, there must be some secret information that is kept private from

her.

In traditional cryptography, a common secret key k is shared by Alice and Bob,

and is used to both encrypt and decrypt the message. Such schemes are also called

symmetric encryption schemes, since k is used for both encryption and decryption

and the same secret is shared by both Alice and Bob.

Substitution Ciphers

A classic example of a symmetric cipher is a substitution cipher, where the secret

key is a permutation π of the characters of the alphabet. Encrypting plaintext M
into ciphertext C consists of replacing each character x of M with character y =
π(x). Decryption can be easily performed by knowing the permutation function π.

24.3. Cryptographic Operations 701

Indeed, M is derived from C by replacing each character y of C with character x =
π−1(y). The Caesar cipher is an early example of a substitution cipher, where each

character x is replaced by character

y = x + k mod n,

where n is the size of the alphabet and 1 < k < n is the secret key. This substitution

scheme is known as the “Caesar cipher,” for Julius Caesar is known to have used it

with k = 3.

Substitution ciphers are quite easy to use, but they are not secure. Indeed, the

secret key can be quickly inferred using frequency analysis, based on the knowl-

edge of the frequency of the various letters, or groups of consecutive letters in the

text language.

Symmetric Cryptosystems

Secure and efficient symmetric ciphers do exist, and are often referred to by their

acronyms, such as “3DES,” “IDEA,” and “AES.” They perform a sequence of

complex substitution and permutation transformations on the bits of the plaintext.

While these systems are important in many applications, they are only mildly in-

teresting from an algorithmic viewpoint; hence, they are out of the scope of this

book. They run in time proportional to the length of the message being encrypted

or decrypted. Thus, we mention that these algorithms exist and are fast, but in this

book we do not discuss any of these efficient symmetric ciphers in any detail.

Public-Key Cryptosystems

A major problem with symmetric ciphers, however, is key transfer, or how to dis-

tribute the secret key for encryption and decryption. In 1976, Diffie and Hellman

described an abstract system that would avoid these problems, the public-key cryp-

tosystem. While they didn’t actually publish a particular public-key system, they

discussed the features of such a system. Specifically, given a message M , encryp-

tion function E, and decryption function D, the following four properties must

hold:

1. D(E(M)) = M .

2. Both E and D are easy to compute.

3. It is computationally infeasible to derive D from E.

4. E(D(M)) = M .

In retrospect, these properties might seem like common sense, but they actually rep-

resent a significant innovation. The first property merely states that once a message

has been encrypted, applying the decryption procedure will restore it. Property two

is perhaps more obvious. In order for a cryptosystem to be practical, encryption

and decryption must be computationally fast.

702 Chapter 24. Cryptography

The third property is the start of the innovation. It means that E only goes one

way; it is computationally infeasible to invert E, unless you already know D. Thus,

the encryption procedure E can be made public. Any party can send a message,

while only one knows how to decrypt it.

If the fourth property holds, then the mapping is one-to-one. Thus, the cryp-

tosystem is a solution to the digital signature problem. Given an electronic mes-

sage from Bob to Alice, how can we prove that Bob actually sent it? Bob can apply

his decryption procedure to some signature message M . Any other party can then

verify that Bob actually sent the message by applying the public encryption proce-

dure E. Since only Bob knows the decryption function, only Bob can generate a

signature message which can be correctly decoded by the function E.

One-Way Hash Functions

Public-key cryptosystems are often used in conjunction with a one-way hash func-

tion, also called a message digest or fingerprint. We provide an informal descrip-

tion of such a function next. A formal discussion is beyond the scope of this book.

A one-way hash function H maps a string (message) M of arbitrary length to

an integer d = H(M) with a fixed number of bits, called the digest of M , that

satisfies the following properties:

1. Given a string M , the digest of M can be computed quickly.

2. Given the digest d of M , but not M , it is computationally infeasible to

find M .

A one-way hash function is said to be collision-resistant if, given a string M , it is

computationally infeasible to find another string M ′ with the same digest, and is

said to be strongly collision-resistant if it is computationally infeasible to find two

strings, M1 and M2, with the same digest.

Several functions believed to be strongly collision-resistant one-way hash func-

tions have been devised. The ones currently advocated the most in practice are

SHA-1, which produces a 160-bit digest, and SHA-256, which produces a 256-bit

digest.

Using One-Way Hash Functions with Digital Signatures

One of the main applications of one-way hash functions is to speed up the construc-

tion of digital signatures. If we have a collision-resistant, one-way hash function,

we can sign the digest of a message instead of the message itself, that is, the signa-

ture S is given by:

S = D(H(M)).

Except for small messages, hashing the message and signing the digest is faster, in

practice, than signing the message directly.

24.4. The RSA Cryptosystem 703

24.4 The RSA Cryptosystem

Probably the most well-known public-key cryptosystem is tied to the difficulty of

factoring large numbers. It is named RSA after its inventors, Rivest, Shamir, and

Adleman. In this cryptosystem, we begin by selecting two large primes, p and q.

Let n = pq be their product and recall that φ(n) = (p− 1)(q − 1). Encryption and

decryption keys e and d are selected so that

• e and φ(n) are relatively prime

• ed ≡ 1 (mod φ(n)).

The second condition means that d is the multiplicative inverse of e modφ(n).
The pair of values n and e form the public key, while d is the private key. In

practice, e is chosen either randomly or as one of the following numbers: 3, 17,

or 65 537.

The rules for encrypting and decrypting with RSA are simple. Let us assume,

for simplicity, that the plaintext is an integer M , with 0 < M < n. If M is a

string, we can view it as an integer by concatenating the bits of its characters. The

plaintext M is encrypted into ciphertext C with one modular exponentiation using

the encryption key e as the exponent:

C ← M e mod n (RSA encryption).

The decryption of ciphertext C is also performed with an exponentiation, using

now the decryption key d as the exponent:

M ← Cd mod n (RSA decryption).

The correctness of the above encryption and decryption rules is justified by the

following theorem.

Theorem 24.12: Let p and q be two odd primes, and define n = pq. Let e be

relatively prime with φ(n) and let d be the multiplicative inverse of e modulo φ(n).
For each integer x such that 0 < x < n,

xed ≡ x (mod n).

Proof: Let y = xed mod n. We want to prove that y = x. Because of the way

we have selected e and d, we can write ed = kφ(n) + 1, for some integer k. Thus,

we have

y = xkφ(n)+1 mod n.

We distinguish two cases.

704 Chapter 24. Cryptography

Case 1: x does not divide n. We rewrite y as follows:

y = xkφ(n)+1 mod n

= xxkφ(n) mod n

= x(xφ(n) mod n)k mod n.

By Theorem 24.7 (Euler’s theorem), we have xφ(n) mod n = 1, which im-

plies y = x · 1k mod n = x.

Case 2: x divides n. Since n = pq, with p and q primes, x is a multiple of either

p or q. Suppose x is a multiple of p, that is, x = hp for some positive

integer h. Clearly, x cannot be a multiple of q as well, since otherwise x
would be greater than n = pq, a contradiction. Thus, gcd(x, q) = 1 and by

Theorem 24.7 (Euler’s theorem), we have

xφ(q) ≡ 1 (mod q).

Since φ(n) = φ(p)φ(q), raising both sides of the above congruence to the

power of kφ(q), we obtain

xkφ(n) ≡ 1 (mod q),

which we rewrite as

xkφ(n) = 1 + iq,

for some integer i. Multiplying both sides of the above equality by x, and

recalling that x = hp and n = pq, we obtain

xkφ(n)+1 = x + xiq

= x + hpiq

= x + (hi)n.

Thus, we have

y = xkφ(n)+1 mod n = x.

In either case, we have shown that y = x, which concludes the proof of the theorem.

The symmetry of the encryption and decryption functions implies that the RSA

cryptosystem directly supports digital signatures. Indeed, a digital signature S for

message M is obtained by applying the decryption function to M , that is,

S ← Md mod n (RSA signature).

The verification of the digital signature S is now performed with the encryption

function, that is, by checking that

M ≡ Se (mod n) (RSA verification).

24.4. The RSA Cryptosystem 705

The Difficulty of Breaking RSA

Note that even if we know the value e, we cannot figure out d unless we know φ(n).
Most cryptography researchers generally believe that breaking RSA requires that

we compute φ(n) and that this requires factoring n. While there is no proof that

factorization is computationally difficult, a whole series of famous mathematicians

have worked on the problem over the past few hundred years. Especially if n is

large (≈ 200 digits), it will take a very long time to factor it. To give you an idea of

the state of the art, mathematicians were quite excited when a nationwide network

of computers was able to factor the ninth Fermat number, 2512 − 1. This number

has “only” 155 decimal digits. Barring a major breakthrough, the RSA system will

remain secure. For if technology somehow advances to a point where it is feasible

to factor 200-digit numbers, we need only choose an n with 300 or 400 digits.

Analysis and Setup for RSA Encryption

The running time of RSA encryption, decryption, signature, and verification is sim-

ple to analyze. Indeed, each such operation requires a constant number of modular

exponentiations, which can be performed with method FastExponentiation (Al-

gorithm 24.5).

Theorem 24.13: Let n be the modulus used in the RSA cryptosystem. RSA

encryption, decryption, signature, and verification each take O(log n) arithmetic

operations.

To set up the RSA cryptosystem, we need to generate the public and private

key pair. Namely, we need to compute the private key (d, p, q) and the public key

(e, n) that goes with it. This involves the following computations:

• Selection of two random primes p and q with a given number of bits. This

can be accomplished by testing random integers for primality, as discussed

at the end of Section 19.4.1.

• Selection of an integer e relatively prime to φ(n). This can be done by pick-

ing random primes less than φ(n) until we find one that does not divide φ(n).
In practice, it is sufficient to check small primes from a list of known primes

(often e = 3 or e = 17 will work).

• Computing the multiplicative inverse d of e in Zφ(n). This can be done using

the extended Euclid’s algorithm (Corollary 24.11).

706 Chapter 24. Cryptography

24.5 The El Gamal Cryptosystem

We have seen that the security of the RSA cryptosystem is related to the difficulty

of factoring large numbers. It is possible to construct cryptosystems based on other

difficult number-theoretic problems. We now consider the El Gamal cryptosystem,

named after its inventor, Taher El Gamal, which is based on the difficulty of a

problem called the “discrete logarithm.”

The Discrete Logarithm

When we’re working with the real numbers, logb y is the value x, such that bx = y.

We can define an analogous discrete logarithm. Given integers b and n, with b < n,

the discrete logarithm of an integer y to the base b is an integer x, such that

bx ≡ y mod n.

The discrete logarithm is also called index, and we write

x = indb,ny.

While it is quite efficient to raise numbers to large powers modulo p (recall

the repeated squaring algorithm, Algorithm 24.5), the inverse computation of the

discrete logarithm is much harder. The El Gamal system relies on the difficulty of

this computation.

El Gamal Encryption

Let p be a prime, and g be a generator of Z∗

p . The private key x is an integer between

1 and p − 2. Let y = gx mod p. The public key for El Gamal encryption is the

triplet (p, g, y). If taking discrete logarithms is as difficult as it is widely believed,

releasing y = gx mod p does not reveal x.

To encrypt a plaintext M , a random integer k relatively prime to p − 1 is se-

lected, and the following pair of values is computed:

a ← gk mod p
b ← Myk mod p

(El Gamal encryption).

The ciphertext C consists of the pair (a, b) computed above.

24.5. The El Gamal Cryptosystem 707

El Gamal Decryption

The decryption of the ciphertext C = (a, b) in the El Gamal scheme, to retrieve the

plaintext M , is simple:

M ← b/ax mod p (El Gamal decryption).

In the above expression, the “division” by ax should be interpreted in the con-

text of modular arithmetic, that is, b is multiplied by the inverse of ax in Zp. The

correctness of the El Gamal encryption scheme is easy to verify. Indeed, we have

b/ax mod p = Myk(ax)−1 mod p

= Mgxk(gkx)−1 mod p

= M.

Using El Gamal for Digital Signatures

A variation of the above scheme provides a digital signature. Namely, a signature

for message M is a pair S = (a, b) obtained by selecting a random integer k
relatively prime to p − 1 (which, of course, equals φ(p)) and computing

a ← gk mod p
b ← k−1(M − xa) mod (p − 1)

(El Gamal signature).

To verify a digital signature S = (a, b), we check that

yaab ≡ gM (mod p) (El Gamal verification).

The correctness of this digital signature scheme is based on the following:

yaab mod p = ((gx mod p)a mod p)((gk mod p)k−1(M−xa) mod (p−1) mod p)

= gxagkk−1(M−xa) mod (p−1) mod p
= gxa+M−xa mod p
= gM mod p.

Analysis of El Gamal Encryption

The analysis of the performance of the El Gamal cryptosystem is similar to that of

RSA. Namely, we have the following.

Theorem 24.14: Let n be the modulus used in the El Gamal cryptosystem. El

Gamal encryption, decryption, signature, and verification each take O(log n) arith-

metic operations.

708 Chapter 24. Cryptography

24.6 Exercises

Reinforcement

R-24.1 Show the execution of method EuclidGCD(14300, 5915) by constructing a table

similar to Table 24.2.

R-24.2 Write a nonrecursive version of Algorithm EuclidGCD.

R-24.3 What is 960 mod 77?

R-24.4 Construct the multiplication table of the elements of Z11, where the element in

row i and column j (0 ≤ i, j ≤ 10) is given by i · j mod 11.

R-24.5 Show the execution of method FastExponentiation(5, 12, 13) by constructing a

table similar to Table 24.6.

R-24.6 Write a nonrecursive version of Algorithm ExtendedEuclidGCD.

R-24.7 Extend Table 24.8 with two rows giving the values of ia and jb at each step of

the algorithm and verify that ia + jb = 1.

R-24.8 Show the execution of method ExtendedEuclidGCD(412, 113) by constructing

a table similar to Table 24.8.

R-24.9 What are the multiplicative inverses of 113, 114, and 127 in Z299.

R-24.10 Construct a table showing an example of the RSA cryptosystem with parameters

p = 17, q = 19, and e = 5. The table should have two rows, one for the plaintext

M and the other for the ciphertext C. The columns should correspond to integer

values in the range [10, 20] for M .

R-24.11 Show the result of an El Gamal encryption of the message M = 8 using k = 4
for the public key (p, g, y) = (59, 2, 25).

Creativity

C-24.1 Prove Theorem 24.1.

C-24.2 Show the existence of additive inverses in Zp, that is, prove that for each x ∈ Zp,

there is a y ∈ Zp, such that x + y mod p = 0.

C-24.3 Let p be a prime. Give an efficient alternative algorithm for computing the mul-

tiplicative inverse of an element of Zp that is not based on the extended Euclid’s

algorithm. What is the running time of your algorithm?

C-24.4 Give an alternative proof of Theorem 24.6 that does not use Theorem 24.3.

C-24.5 Show how to modify Algorithm ExtendedEuclidGCD to compute the multi-

plicative inverse of an element in Zn using arithmetic operations on operands

with at most 2⌈log
2
n⌉ bits.

24.6. Exercises 709

C-24.6 Suppose Alice wants to send Bob a message, M , that is the price she is willing

to pay for his old bike. Here, M is just an integer in binary. She uses the RSA

algorithm to encrypt M , to produce the ciphertext, C, using Bob’s public key,

and sends it to Bob. Unfortunately, Eve has intercepted C before it gets to Bob

Explain how Eve can use Bob’s public key to alter the ciphertext C to change it

into C ′, so that if she sends C ′ to Bob (with Eve pretending to be Alice), then,

after Bob has decrypted C ′, he will get a plaintext that is twice the value of M .

C-24.7 Solve the previous exercise, but use the El Gamal cryptosystem instead of RSA.

C-24.8 Suppose the primes p and q used in the RSA cryptosystem, to define n = pq, are

in the range [
√

n− log n,
√

n + log n]. Explain how you can efficiently factor n
using this information.

C-24.9 Why can’t you use the pair (1, n) as an RSA public key, even if n = pq, for two

large primes, p and q?

Applications

A-24.1 There is a perfectly secure cipher, known as the one-time pad, which is said

to have been used for encrypting messages on the “hot line” between Moscow

and Washington, DC, during the Cold War. In this cryptosystem, Alice and Bob

each share a random bit string, K, as large as any message they might wish to

communicate. The string K is the secret key. To compute a ciphertext, C, from

a message, M , Alice computes

C = M ⊕ K,

where “⊕” denotes the bitwise exclusive-or operator. Show that Bob can decrypt

the ciphertext, C, by computing C ⊕ K. Also, show that this scheme achieves

perfect confidentiality, based on the facts that each bit of the output is indepen-

dent, random, and every plaintext of length |M | is a possible plaintext for the

ciphertext, C.

A-24.2 There are instances when it is useful to prove that a document, D, exists on a

certain date. In order to facilitate such proofs, Bob collects a group of docu-

ments, D1, D2, . . . , Dn, every day from people wanting time stamps for their

documents on that day. Bob constructs a complete binary tree, T , with n leaves,

of height ⌈log n⌉, with each leaf, i, associated with a document, Di. He stores

at i the result, hi = H(Di), of a one-way hash function computed on Di. For

each internal node, v, with children x and y, he stores hv = H(hx||hy), where

|| denotes concatenation. Finally, he publishes the value, hr, for the root, r, of

T in a classified advertisement in a local newspaper. How can Bob give each

document owner a set of O(log n) numbers so that together with the classified

advertisement, each document owner can prove the existence of his or her docu-

ment on the date the ad appeared, with the confidence of the security properties

of the one-way hash function, H?

A-24.3 Consider the time stamping problem from the previous exercise, but now suppose

that each day that there is one document added to the set, and one document that

is removed from the set, but all of the remaining documents still need to be proven

710 Chapter 24. Cryptography

to exist as a part of the set on that day. Explain how Bob can update the tree, T ,

in O(log n) time, to reflect these changes?

A-24.4 Suppose Alice is a U.S. spy on a 7-day trip to a faraway land and wants to prove

for each day she is gone that she not been captured. She has chosen a secret ran-

dom number, x, which she is keeping secret. But she did tell her CIA handler the

value y = H(H(H(H(H(H(H(x))))))), where H is a one-way cryptographic

hash function. Unfortunately, her enemy, Eve, was able to listen in on this mes-

sage; hence, Eve also knows the value of y. Explain how Alice can send a single

message every day that proves she has not been captured.

A-24.5 Digital certificates are signed documents, where a respected authority verifies the

binding between a person’s identity information (like their name, email address,

etc.) and their public key. But if that person loses the private key that goes with

his or her public key, then this certification needs to be revoked. To support this

service, the respected authority can keep a dictionary, D, of revoked certificates.

Explain how the authority can answer any request for the revocation status for

any digital certificate in O(log n) time, where n is the size of D. Also, how can

the person asking this query be able to prove to a third party that the result is

valid?

A-24.6 One of the main uses for public-key cryptography is that it can be used to es-

tablish a secret key for a communication session between Alice and Bob even if

they have never met to share that secret key in advance. Explain how public key

cryptography can be used for this purpose.

A-24.7 Suppose Bob has an RSA public key, (e, n), and that he has promised Eve that

she can send him any single message, M < n, and he will sign M using a

simple RSA signature method to compute S = Md mod n, where d is his private

RSA exponent, sending S back to Eve. What Bob doesn’t know is that Eve

has previously captured a ciphertext C that Alice encrypted for Bob using her

plaintext, P , and Bob’s RSA public key, (e, n). Eve wants to trick Bob into

decrypting C for her without revealing P . So Eve asks Bob to sign the message

M = reC mod n, where r is a random number that Eve chose to be relatively

prime to n. Explain how, even though she does not know the value of d, Eve can

use Bob’s signature, S, on M , to discover the plaintext, P , for C.

Chapter Notes

An introduction to number theory is provided in books by Koblitz [133] and Kranakis [136].

The classic textbook on numerical algorithms is the second volume of Knuth’s series on

The Art of Computer Programming [130]. Algorithms for number theoretic problems are

also presented in the books by Bressoud and Wagon [38] and by Bach and Shallit [19].

The RSA cryptosystem is named after the initials of its inventors, Rivest, Shamir, and

Adleman [178]. The El Gamal cryptosystem is named after its inventor [79]. Sections 24.1

and 24.3 are based in part on an unpublished manuscript of Achter and Tamassia [1].

